
CEWES MSRC/PET TR/98-30

Identifying Boundary Anomalies to Facilitate
Correct Parallel Image Composition

by

Lance C. Burton
Raghu Machiraju
Donna S. Reese

05h00298

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

Identifying Boundary Anomalies to Facilitate Correct Parallel Image Composition

Lance C. Burton
Raghu Machiraju
Donna S. Reese

NSF Engineering Research Center for Computational Field Simulation
Mississippi State University

{burtonl,raghu,dreese}@erc.msstate.edu

Abstract
Parallel image composition presents an attractive
approach to run-time visualization of structured grid data.
However, certain configurations of grid boundaries pre-
vent composition from being performed correctly. In par-
ticular, when the boundary between two partitions
contains concave sections, the partitions may no longer be
depth sorted correctly, a requirement for some visualiza-
tion techniques such as raycasting. If the data may be rep-
artitioned such that it can be depth sorted correctly, then
an image composition approach is a viable option. To
facilitate such an operation, we present an algorithm to
analyze the geometric structure of a grid boundary and
extract knowledge about how the boundary impacts depth
sorting and therefore image composition.

1 Introduction

Parallel techniques provide researchers in many disci-
plines with the capability to handle large problems in a
timely fashion. In computational field simulation (CFS)
research, the entire pipeline may be parallelized, begin-
ning with grid generation, continuing through computa-
tional fluid dynamics (CFD) flow solutions, and
terminating with visualization. Typically, visualization is
performed as a post-processing step on the output of the
flow solver. Some systems handle run-time streams, but
they are still logically post-mortem.

With the ever-increasing power of parallel technology,
scientific applications generate datasets too large to be
interactively viewed with a uniprocessor visualization sys-
tem, particularly when time-consuming techniques such as
direct volume rendering are employed. As with other
memory- and cpu-intensive operations, parallelization pro-
vides a solution. Many parallel visualization efforts have
yielded satisfactory results, again in a post-mortem fash-

ion (Ellsworth 1993) (Ma et al. 1993) (Lacroutte 1995)
(Ma 1995) .

If our application delivers results quickly enough, it
may be desirable to visualize said results immediately. We
might be interactively steering a simulation, debugging an
algorithm, or performing a time-critical operation where
(near) instant feedback is required. Given a parallel solver
and a parallel visualization tool, a logical course of action
to investigate would be to combine the two, performing
visualization in-place alongside the solver.

Volume visualization techniques such as raycasting
generate image data via a front-to-back traversal of the
data (Ma et al. 1993). As a ray travels through the volume,
data samples are accumulated with a constant frequency.
When the technique runs in parallel, rays that traverse
multiple partitions become segmented and must be gath-
ered together for assembly. When such an action is per-
formed by accumulating all segments on a single node, the
intermediate storage requirements for the segments and
the adjacency information can become quite large and
hardware support for such operations is quite scarce.

Image composition presents an attractive alternative
to segmented raycasting as an in-place parallel rendering
scheme. In an image composition scheme, each node gen-
erates a complete image based upon its local data. The
images are then globally combined, pixel by pixel, to cre-
ate the final image (Porter and Duff 1984) (Duff 1985)
(Molnar et al. 1994) (Lee, Raghavendra and Nicholas
1995).

The input data remains on its computational node,
therefore communication complexity is divorced from data
complexity. Instead, the required bandwidth depends only
upon the desired resolution of the rendered images, and
even that value may be lessened through optimization.
Additionally, ongoing research strives to create a hardware

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

solution for image composition (Molnar 1991) (Molnar,
Eyles and Poulton 1992).

Image composition is not without its drawbacks, how-
ever. When the underlying rendering technique requires a
front-to-back sorting, such as alpha blending for raycast-
ing or transparency, an image composition approach will
fail to give correct results if the data cannot be properly
sorted. Such a case occurs in volumetric datasets when the
data decomposition creates non-planar boundaries, such as
that found in curvilinear structured grids. While in some
cases a standard planar subdivision such as block or octree
is appropriate for a given application, a more domain-spe-
cific decomposition, tailored to expected results, may be
optimal for some parallel solvers. Under such circum-
stances, correct image composition is impossible because
the concave nature of a non-planar boundary induces a
cycle in the visibility graph, thereby precluding an unam-
biguous depth sort.

In Figure 1 we see one block of a structured grid that
has been partitioned radially and circumferentially. The
boundaries have been adapted to accommodate the
expected flow across a set of turbomachinery fan blades.
The result is concavity in both the radial and circumferen-
tial boundaries. Since another block fits snugly against
each of these boundaries, the aforementioned depth sort-
ing problem occurs.

All is not lost, however. If some partitioning exists
that allows proper depth sorting for a given viewpoint,
then we can always repartition and redistribute the data to
perform the visualization step. Unfortunately, this
approach may incur a heavy penalty, particularly when a
significant percentage of the data migrates. Furthermore,
the same prohibitive memory constraints that motivated a
parallel solution for large datasets may not allow addi-
tional data to be stored on a given node.

Suppose instead that an acceptable partitioning exists
as a superset of the current decomposition. The original
demarcation remains, and further subdivision is performed

on each contiguous partition. We would intuitively expect
said subdivision to occur in the neighborhood of the afore-
mentioned non-planar boundaries. The result is a set of
contiguous volumes, some coexisting on a single process-
ing node, that can be unambiguously depth sorted. Conse-
quently, we can generate an image for each of the new
partitions and composite those images accordingly, prefer-
ably with a hardware composition network that permits the
computational nodes to continue with the simulation
(Molnar 1991) (Molnar et al. 1992).

Pursuant to such a view-dependent dynamic partition-
ing, we need to extract knowledge from the topology of
the data regarding boundary anomalies. While simple
detection of problem areas is sufficient to indicate that a
potential conflict exists and where it will occur, higher
level structural information is required in order to deter-
mine the interaction between a given viewpoint and an
anomaly.

The knowledge extraction algorithm consists of a
sequence of identification and classification steps. We
must first identify which areas of the boundary will pose
an obstacle to depth sorting. This is done by computing the
difference between the grid surface and the convex hull of
the grid. The difference will be comprised of zero or more
discrete contiguous volumes, or cavities. Having identified
the cavities, we then perform an edge detection step to fur-
ther subdivide each cavity into entirely convex or entirely
concave patches. We do this as part of a divide-and-con-
quer scheme. The patches are then analyzed independently
to determine the effect of each upon composition when
considered separately. Finally, we calculate the interaction
among groups of groups of patches and combine that with
the individual information to specify the overall behavior
in terms of what sections of the grid will present problems
for viewpoints in characteristic zones of view space.

In Section 2 and Section 3 we investigate the initial
stages of the knowledge extraction process, including cav-
ity detection and classification. Section 4 explores the
local impact of a single monotonically convex or concave
patch upon image composition, while Section 5 expounds
upon the relationship between groups of patches. Section 6
pulls the results from the previous sections into a single
coherent classification of view space into characteristic
zones. Concluding remarks and the direction of future
work are presented in Section 7.

Figure 1 One partition of a structured grid with
concave boundaries

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

2 Cavity Identification

The first step in identifying boundary anomalies is to
find all discrepancies between the convex hull and the grid
area/volume. These anomalies permit lines of sight to
enter and exit a volume multiple times. Such discrepancies
manifest themselves in three forms (Williams 1992):

cavity - a “dimple” in the boundary, formed by the
enclosure of the convex hull and a contiguous sub-
section of the grid boundary that is not part of the
convex hull

void - an internal vacuum, formed solely by a closed,
contiguous section of the surface not part of the con-
vex hull

hole - a puncture through the volume, formed by a
closed, contiguous section of the surface not part of
the convex hull and two disjoint but locally contigu-
ous subsections of the convex hull (only meaningful
in 3D)

For purposes of this paper, we will confine our atten-
tion to the most common deformation, the cavity. Since,
by definition, those sections of the surface that belong to
the convex hull are unable to “see” any other sections, we
can safely ignore them for purposes of depth sorting.
However, we may use the convex hull itself to assist in dis-
tinguishing the regions on the hull from the cavities.

Consider the partial structured grid inFigure 2. Three
boundaries are depicted, two of which are convex. The
third is a Beziér curve such as one might expect as the
result of a computer-aided design effort. Depending upon
the application, a parallel solver may find it advantageous
to use such a curve as a basis for data decomposition. Note
that the curve is concave in some regions, preventing
unambiguous depth sorting should another partition lie
along that boundary

Well-known algorithms exist to find 2D and 3D con-
vex hulls for an arbitrary set of points (Cormen, Leiserson,
and Rivest 1990) (Edelsbrunner and Shi 1991). InFigure
3, we see the convex hull of the sample grid fromFigure 2.
Note that the hull follows along the two convex edges on
either side and stretches across the concave edge, forming
a cavity. In 3D, the hull would be some sort of non-planar
surface, composed of twisted quadrilaterals.

The cavity itself is defined by two surfaces, as men-
tioned previously. For the cavity inFigure 3, each surface
is defined by a set of discrete points, as shown inFigure 4.

Identification of these defining points combined with
knowledge of the implicit connectivity of the grid allow us
to reconstruct the cavity, which will be used in later algo-
rithms.

For a 2D structured grid, one straightforward
approach is to walk the convex hull, in either a clockwise
or counterclockwise fashion, and mark where the grid sur-
face deviates from the hull. Another method is to group all
surface points not on the convex hull, select one, and grow
a concave region around it. For this research, we choose
the latter because the algorithm translates directly to use
on a 3D structured grid.

The function cavityWalk takes as input a grid specifi-
cation G and returns a cavity list CL. Once the convex hull

Figure 2 A concave boundary of a 2D structured
grid - boundary 2 is concave

1

2

3

Figure 3 The local convex hull for Figure 2

Cavity

Figure 4 Defining points of the cavity

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

has been calculated, an exterior point not on the hull is
selected, and the cavity is recursively grown around that
point. The cavity is grown by recursing on all neighboring
points, with an anchor at either a point already in the cav-
ity or a member of the convex hull. The notion of a neigh-
bor is very important. In order to properly include corner
points, we need to look at 8-way neighbors on the surface,
not just 4-way. In some cases, an extreme edge - an edge
of the grid’s cube in parametric space - may actually not
be part of the convex hull, therefore we must consider
neighbors on adjacent “walls” as well. The region growing
stops when a boundary consisting entirely of points on the
convex hull has been reached. Once a cavity has been
identified and stored in the list, a new point is selected that
again is not on the convex hull and is also not part of any
cavity discovered so far. The process continues until all
exterior points have been assigned a cavity.

function cavityWalk(grid G, cavityList CL)
{

compute convex hull CH(G)
let E be all exterior points of G not in CH(G)
while (|E| > 0)
{

select a point p from E
remove p from E
assign p to a new cavity C
grow(p, C)
add C to CL

}
}

function grow(point p, cavity C)
{

for (each surface neighbor n of p)
{

if (!(n ∈ C))
{

add n to C
if (!(n ∈ CH(G)))
{

remove n from E
grow(n, C)

}
}

}
}

}
}

3 Convex/Concave Classification

To further assist the knowledge extraction process, we
apply a divide-and-conquer methodology to break the
problem into smaller, more manageable pieces. Given the
ongoing conflict between convex and concave regions, we
dissect and classify the entire cavity according to this
dichotomy. The overall cavity is filtered through a kind of
edge detection algorithm that separates the surface into
monotonically convex or concave patches, defined as fol-
lows:

Definition: Monotonically convex/concave - a curveC
is monotonically concave or convex if for all pointsp
∈ C, curvature(C,p) has the same orientation or is
zero

In the continuous domain, a curve may only change
convexity (with respect to a certain notion of inside and
outside) where its curvature becomes zero. Obviously, a
convexity change requires that the curve be locally convex
on one side of the point of zero curvature and locally con-
cave on the other side. Furthermore, extended regions of
zero curvature may exist.

For a discrete curve, such as our structured grid
boundary, regions of exact zero curvature may not exist,
due to the inherent nature of the sampling process. How-
ever, the curve is piece-wise linear along grid lines. Conse-
quently, the local curvature may be easily calculated by
examining the crease angle between adjacent facets.
Angles of less than 180 degrees indicate concavity. There-
fore, a monotonically convex region of a discrete curve is
one whose component crease angles are all 180 degrees or
more, while a monotonically concave region contains only
crease angles of less than 180 degrees.

We may therefore use the crease angles within a
region to classify said region as convex or concave, pro-
vide all crease angles within the region are designated with
the same orientation. The boundaries of each region are
defined by transition points (edges in 3D). A transition
point itself is either a concave or a convex junction, and is
neighbored on one side by a concave junction and on the
other by a convex junction. Furthermore, each point of the
cavity belonging to the convex hull bounds one or more
regions. The transition points for the cavity inFigure 4 are
shown inFigure 5.

The actual placement of transition points is subject to
some interpretation for a discretely sampled curve. Transi-
tions on such a curve actually happen across a face, the

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

boundaries of which become candidates for actual transi-
tion points.Figure 6 shows an adjacent convex-concave
pair of patches that could be separated at one of two junc-
tions, one concave and one convex.

Depending upon the actual layout of the surrounding
points, a given selection of a transition point may actually
remove a patch of sufficiently small size, e.g., a patch
formed of only three points. Such small patches are effec-
tively absorbed into neighboring patches. The exact bene-
fit or detriment of such absorption is unclear, but it seems
intuitively to be positive. Furthermore, regions of zero cur-
vature within a cavity present an additional factor to con-
sider. For example, consider the stairstep pattern inFigure
7. Selecting the hollow circle in the center as a transition
point yields two concave regions, but selecting two points,
one from each of the arms connected to the hollow circle,
yields an additional convex region. In order to select the
best set of transition points, we need a set of guidelines or
heuristics to assist the process.

Once we have actually selected the transition points,
we can then group points into connected components,
where each connected component consists of a set of tran-
sition pointsT plus all intermediate pointsP such that for
any pointp ∈ P, there exists a path fromp to each point in
T that does not pass through any transition point not inT,
and there exists no path fromp to a transition point not in
T that does not pass through a transition point that is inT.
Such conditions ensure that each non-transition point in
the cavity belongs to exactly one connected component
and each transition point belongs to at least one. In prac-
tice, an incremental region growing algorithm that works
its way from transition point to transition point should sat-
isfy the requirements. A classification for the cavity in
Figure 4 is shown inFigure 8.

4 Intraregion Influence

Once we have classified each convex and concave
region within the cavity, we need to determine each
region’s effect on depth sorting. The correctness of any
given depth sorting is dependent upon the view, but we
may determine a priori a set of ranges specifying which
patch(es) preclude depth sorting for a view within a given
range. Regions interact not only with each other, but with
themselves as well. Therefore, we will investigate intrar-
egion influence and interregion influence separately.

The intraregion influence of a convex or flat section is
obvious - by definition, a line of sight exiting such a sur-
face will not reenter at another point on that surface. We
can therefore safely confine our focus to concave regions.
The configuration of a concave region directly influences
the effect said region has on depth sorting. We classify a
configuration by noting relative positions and orientations
of the endpoints of the region’s defining curve.

Consider a typical case with a small degree of curva-
ture. InFigure 9, we see a simple depression that forms a

Figure 5 Transition points between monotoni-
cally convex and concave regions

Convex junction

Concave junction

Figure 6 Possible transition points

Figure 7 Transition point ambiguity

Transition candidate 1

Transition candidate
 2

Figure 8 Classified monotonically convex and
concave patches

Concave regions

Convex region

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

kind of obtuse mouth. The tangents of the curve at the end-
points flare out, diverging in front of the mouth. If our
viewpoint lies within the area bounded by the curve and
the two tangent lines, then the curve will not pose an
obstacle to correct depth sorting. The diametrically
opposed region behind the convergence point provides
similar benefits.

As the tangent lines become parallel, the convergence
point, and its associated safe zone, move out to an infinite
distance from the curve.Figure 10 shows a concave region
whose mouth is square, i.e. the tangent lines are parallel.
Note that the only safe area lies in the rectangle-like region
directly in front of the curve.

Inward deviation from the parallel configuration cre-
ates an acute mouth with a convergence point that now lies
in front of the curve. As a result, the safe viewpoint region,
as with the square mouth inFigure 10, only lies in front of
the mouth and is bounded by the curve itself and the two
tangent lines. Such a curve is seen inFigure 11.

When the tips of the curve start to turn in upon the
curve itself, the tangent line exiting one or more of the
endpoints intersects the curve at a separate point. Once
this happens, not even the area within the mouth of the
curve remains safe. As seen inFigure 12, only the region

bounded by the curve and the bridge between endpoints
allows a safe viewpoint.

5 Interregion Interaction

Whether or not a curve patch poses a problem with
respect to itself, its interaction with other patches must be
considered as well. Any pair of patches that can “see” one
another create a sorting anomaly. Two patches “see” each
other if a line of sight can be drawn from the front face of
one patch to the front face of the other.

A concave patch can see a convex patch, and vice
versa, if and only if we can draw a line that extends from
an endpoint of the concave patch and is tangent to the con-
vex patch, and the convex patch exists in the half-space
formed by the concave patch. The line condition ensures
that the convex patch is facing the concave patch, and the
half-space condition ensures the reverse.Figure 13 shows
examples of convex-concave pairs that fail one or both
conditions and therefore cannot see each other.

If two patches can see each other, then we can deter-
mine their mutual effect by treating each defining point of
a patch as a point light source and calculating the shadow
cast by the other patch. This is similar to the visibility
computations done by Teller that computed the antipen-
umbra of an area light source through a series of portals

Figure 9 Concave patch with obtuse mouth

Convergence point

Safe zone in
front of mouth

Safe zone in
behind mouth

Figure 10 Concave patch with square mouth

Safe

Convergence point
at∞

Figure 11 Concave patch with acute mouth

Restricted
Safe Zone

Figure 12 Concave patch with self-intersecting
tangent lines

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

(Teller 1992). The illumination volume from Teller’s pro-
jection specified what regions of a densely occluded poly-
hedral environment were visible through a given portal,
i.e., a gap between solid surfaces.

Similarly, we would like to ascertain two important
pieces of information: (1) exactly which portions of each
patch are mutually visible; and (2) the range in which a
viewpoint may have a line of sight that exits one patch and
enters another. The point source projection gives us both,
with the proper interpretation. The resultant shadow vol-
ume bounds the range of unsafe viewpoints, while the
intersection of the volume with the patch casting the
shadow defines the region of visibility. The union of all
such volumes and intersections fully specifies the mutual
influence of two patches as well as the bounded viewpoint
areas for which correct depth sorting cannot be accom-
plished.

 The shadow volume generated by projecting one
point source over a patch is bounded by the set of lines
tangent to the patch that intersect the point source. For our
discrete structured grid, these lines will actually connect
the point source to one of the defining points of the patch.
Figure 14 shows the shadow volume created by projecting
each defining point of patch A over patch B. Each point
source creates a conic area that overlaps some of the other

projections. The aggregate overlap of all the areas defines
the regions in space in which a viewpoint may lie that has
at least one line of sight that will exit a front face of patch
B and enter a front face of patch A.

The inverse projection, from patch B to A, is inFigure
15. Again, we have conic areas that overlap and merge to
form a single contiguous area that represents our trouble-
makers in view space. Combining this information with
that gleamed from the projection inFigure 14 yields a dis-
section of space into safe regions and not safe regions, as
marked inFigure 16

Performing the projection operation on the next two
patches, B and C, gives us a similar situation. As we see in
Figure 17, even the geometry of the safe and unsafe
regions is comparable, due to the similarity between
regions A and B. Note that both of these pairings, A/B and
B/C, are of adjacent patches, one convex and one concave.

The procedure is identical for patch pairs that are con-
vex-convex, concave-concave, and/or not adjacent. For
patches A and C, we perform the same point source pro-
jection on each defining point of each patch. The resultant
aggregate shadow volume again allows us to determine
visibility and safe viewpoint information, as seen inFigure
18.

Figure 13 Convex-concave pairs that cannot see
each other

No line
No half-space

No half-spaceNo line

Patch A Patch B

Figure 14 Shadow volume from projecting patch
A to patch B

Point-endpoint projection
Point-tangent projection

Patch A Patch B

Figure 15 Shadow volume from projecting con-
vex patch B onto concave patch A

Safe

Safe

Patch A

Patch B

Figure 16 Combined visibility and safe view-
point ranges for composition with respect to

adjacent patches A and B

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

Depending on the exact configuration of the patches,
the shadow volume method described above may actually
delineate larger regions than necessary. Our visibility
requirement stipulates that external faces must be able to
see each other. In many cases, however, portions of one
patch may occluded from another, either by the patch itself
or by other intervening patches.

Occlusion from intervening patches will be handled
by the interplay between each such patch and the current
patches under consideration. Self-occlusion may be mod-
elled by again computing shadow volumes, but only those
that strike a front face of a patch. Note that previously we
only considered the shadow volume on the back face of
each patch by essentially projecting around the patch’s
convex hull.

In Figure 19 are two such self-occluding regions, one
from each of patch A and patch C. No line of sight may be
drawn from A that strikes a front face of the self-occluding
region in C before striking a back face, and vice versa.
Therefore, we may amend our visibility information
accordingly, as inFigure 20.

6 Characteristic Zones

As we have seen in the previous sections, each mono-
tonically convex or concave patch has its own distinct
impact upon composition. The concave patches are self-
occluding and therefore have their own individual signa-
ture in view space, separating the safe viewpoints from the
problematic ones. However, we are trying to gauge the
global behavior of the entire cavity, so we need to consider
how to merge the individual solutions of our divide-and-
conquer approach.

In Section 4, we examined how a single concave patch
affected composition and determined that a patch with an
obtuse mouth sectioned view space into four quadrants,
two of which were safe for composition and two of which
were not. Suppose we combined the results of two of these
single patch analyses.Figure 21 shows the breakdown of
space with the merged results for the concave patches
from Figure 8.

Each of patches A and C has its four quadrants, but
the quadrants overlap, further dividing the view space. The
intersections of the safe zones are of course still safe, but

Safe

Safe

Patch CPatch B

Figure 17 Safe viewpoint ranges for composi-
tion with respect to adjacent patches B and C

Safe

Safe

Patch C

Figure 18 Safe viewpoint ranges for composi-
tion with respect to non-adjacent concave

patches B and C

Patch A

Patch C

Figure 19 Regions of self-occlusion

Patch A

Safe

Safe

Patch C

Figure 20 Safe viewpoint ranges for composi-
tion with respect to non-adjacent concave
patches B and C, considering occlusion

Patch A

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

they are now much smaller. The remainder of the safe
areas are divided into two categories - (1) safe with respect
to A but not C; and (2) safe with respect to A but not C.
The completely unsafe zones have also shrunk - pieces of
them have been absorbed into the aforementioned condi-
tional safe zones. Hence, we now have eight distinct areas
of view space, each with their own characteristics. Those
characteristics specify which patches will hamper compo-
sition for any viewpoint in a given area, thus allowing us to
confine our repartitioning efforts to just the necessary ele-
ments.

We can extend this combination concept to include all
of the extracted knowledge, including both intraregion and
interregion data. The result, as above, is a dissection of
view space into a collection of disjoint areas, each of
which has associated visibility information about the inter-
action among patches. For our sample grid, we consolidate
our previous five analyses (one for each of the convex
patches, and one for each pairing) to produce the overall
fragmentation inFigure 22.

Each fragment of view space is now keyed not only to
the intraregion influence but also to the interaction
between patches. Therefore at any given point in space, we

can determine our region and thence identify any problem
patches and determine how those patches affect composi-
tion.

7 Conclusions and Future Work

We have a shown an algorithm for identifying bound-
ary anomalies on structured grids that will inhibit parallel
image composition. We have further demonstrated a meth-
odology by which an anomaly may be broken down into
its component convex and concave patches. The resultant
patches of monotonic curvature may then be analyzed
using shadow volumes to determine visibility information
regarding which front faces of a patch present a depth sort-
ing problem. The combination of all such analyses yields a
global visibility solution that dissects the view space into
disjoint regions, each of which is affected, in terms of
composition correctness, by some subset of the surface
patches.

Several issues need to be addressed in order to bring
the eventual goal of correct image composition to fruition.
First, a solid algorithm to select convex-to-concave transi-
tions is required. A certain amount of flexibility exists in
this selection due to the discrete nature of structured grids.
As stated in Section 3, transitions can occur on either a
concave or a convex edge. The only requirement is that the
neighboring transitions parallel to the edge under consid-
eration be one each of convex and concave. The selection
flexibility comes into play particularly for very small local
deformations, such as a convex peak composed of only
four edges. One selection may isolate this peak while
another will distribute it into the neighboring concave
patches.Figure 23 shows just such an example. To prop-
erly solve this issue, we will need to apply some heuristic
techniques to identify patterns and most likely collect
some empirical data to determine the quality of any given
selection.

As with many geometric problems, extension from
2D to 3D incurs an immense increase in complexity.
Whereas in 2D we can define our structures in terms of
simple points and curves, a 3D representation requires
curves and surfaces, respectively. In our small 3D example
of Figure 23, the patch surfaces are separated by a discrete
closed curve. In this example, the transition curve happens
to be of a nice roughly rectangular shape. A real grid, such
as the turbomachinery section inFigure 24, may deliver
transition curves with jagged edges, similar to the aliasing
found in line drawing algorithms. The curves themselves
may even be concave.

Safe

Safe

Patch C

Figure 21 Safe viewpoint ranges considering
multiple intrapatch influence

Patch A

Figure 22 Aggregate visibility analysis

Safe

Safe

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

Aside from the representation, the basic algorithms
remain the same for 2D and 3D. For example, the cavity
identification algorithm outline in Section 2 translates
directly to 3D. The primary differences lie in the tools
used to build the algorithm - the convex hull algorithm, the
collection of “surface” points, and the notion of neighbors.
When calculating transitions, 3D patches are bounded by
curves. One notable issue here is that some patches may
have holes, such as when a depression has a small convex
bump in the middle. The shadow volumes generated in
Sections 4 and 5 become true volumes bounded by com-
plex surfaces, rather than the simple conic sections shown
in the 2D examples, and their unions and intersections
become correspondingly more complex.

The current implementation inputs PLOT3D files
(Bancroft et al. 1991) and calculates the convex hull, iden-
tifies cavities, and classifies each edge as concave or con-
vex. As stated above, a smart algorithm is required to
properly delineate the convex patches from the concave
ones. InFigure 24, Figure 25, andFigure 26 we see differ-
ent views of the partition of the turbomachinery grid from
Figure 1. The points along the cavity boundaries are iden-

tified by the square markers. By definition, each of these
points belongs to the convex hull. Also shown are the
expected transition curves for this grid. Despite the length-
wise wave effect of the grid, only one true convex patch
exists on the surface. The rest of the surface that is convex
length-wise is concave in the orthogonal direction, form-
ing a saddle.

Once we have handled all of the issues regarding tran-
sition points and 3D representation, our next step is to
determine how to use the information extracted thus far to
repartition our data in such a fashion as to allow correct
depth sorting and consequently correct image composi-
tion. The regions portrayed inFigure 22 provide a good
starting point. For any given viewpoint, we can determine
which regions are problematic and the extent to which
they are so. This same information will prove useful in
determining how to repartition our data at run-time. Given
that the results of our algorithm delineate view space into
characteristic zones, one approach we may take is to deter-
mine a characteristic view for each zone that embodies the
information necessary to repartition (Weinshall and Wer-
man 1997).

Figure 23 3D cavity with multiple transition
options

Figure 24 Turbomachinery grid with identified
cavity and expected transition curve

Figure 25

Figure 26

Submitted to 1998 Eurographics Workshop on Parallel Graphics and Visualization

Acknowledgements
This work was supported by the NSF Engineering

Research Center for Computational Field Simulation, Mis-
sissippi State University and the DoD High Performance
Computing Modernization Program CEWES Major
Shared Resource Center through Programming Environ-
ment and Training (PET) (Supported by Contract Number:
DAHC 94-96-C0002 Nichols Research Corporation).

References
[1] Bancroft G., F. Merritt , T. Plessel, P. Kelaita, R. McCabe,

and A. Globus. 1991. FAST: A Multi-Processed Environ-
ment for Visualization of Computational Fluid Dynamics.
AIAA Paper 91-0793, InProceedings of the 29th Aerospace
Sciences Meeting, Reno, NV.

[2] Cormen, Thomas H., Charles E. Leiserson, and Ronald L.
Rivest. 1990.Introduction to Algorithms. Cambridge: The
MIT Press.

[3] Duff, Tom. 1985. Compositing 3-D Rendered Images. In
Proceedings of ACM SIGGRAPH ‘85 : 41-44.

[4] Edelsbrunner, H. and W. Shi. 1991. AnO(n log2 h) Time
Algorithm for the Three-dimensional Convex Hull Problem.
SIAM J. Comput. 259-277.

[5] Ellsworth, David. 1993. A Multicomputer Polygon Render-
ing Algorithm for Interactive Scientific Visualization. In
Proceedings of the 1993 Parallel Rendering Symposium in
San Jose, CA, 1993, 43-48.

[6] Foley, James D., Andries vanDam, Steven K. Feiner, and
John F. Hughes. 1990.Computer Graphics Principles and
Practice. Reading: Addison-Wesley.

[7] Lacroutte, Phillipe. 1995. Real-Time Volume Rendering on
Shared Memory Multiprocessors Using the Shear-Warp Fac-
torization. In Proceedings of the 1995 Parallel Rendering
Symposium in Atlanta, GA, 23-30.

[8] Lee, Tong-Yee, C.S. Raghavendra, and John Nicholas. 1995.
Image Composition Methods for Sort-Last Polygon Render-
ing on 2-D Mesh Architectures. InProceedings of the 1995
Parallel Rendering Symposium in Atlanta, GA, 55-62.

[9] Ma, Kwan-Liu, James Painter, Charles Hansen, and Michael
Krogh. 1993. A Data Distributed, Parallel Algorithm for
Ray-traced Volume Rendering. InProceedings of the 1993
Parallel Rendering Symposium in San Jose, CA, 15-22.

[10]Ma, Kwan-Liu. 1995. Parallel Volume Ray-Casting for
Unstructured-Grid Data on Distributed-Memory Architec-
tures. InProceedings of the 1995 Parallel Rendering Sympo-
sium in Atlanta, GA, 23-30.

[11]Molnar, Steven. 1991. Image-Composition Architectures for
Real-Time Image Generation. Ph.D. dissertation, University
of North Carolina at Chapel Hill.

[12]Molnar, Steven, John Eyles, and John Poulton. 1992. Pixel-
Flow: High-Speed Rendering using Image Composition. In
Proceedings of ACM SIGGRAPH ‘92 : 231-240.

[13]Molnar, Steven, Michael Cox, David Ellsworth, and Henry
Fuchs. 1994. A Sorting Classification of Parallel Rendering.
IEEE Computer Graphics and Applications 14 (July): 23-32.

[14]Porter, Thomas and Tom Duff. 1984. Compositing Digital
Images. InProceedings of ACM SIGGRAPH ‘84 : 253-259.

[15]Teller, Seth. 1992. Visibility Computations in Densely
Occluded Polyhedral Environments. Ph.D. dissertation, Uni-
versity of California at Berkeley.

[16]Weinshall, Daphna and Michael Werman. 1997. On View
Likelihood and Stability. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 19 (February): 97-108.

[17]Williams, Peter. 1992. Visibility Ordering Meshed Polyhe-
dra. ACM Transactions on Graphics 11 (April): 103-126.

